

# On Strongly $\beta$ -Generalized $c^*$ -Closed Sets in Topological Spaces

S. Malathi<sup>1</sup>, J. Maheswari<sup>2</sup>

<sup>1,2</sup>Assistant Professor, Department of Mathematics, Wavoo Wajeeha Women's College of Arts and Science, Kayalpatnam - 628204, Tamilnadu, India.

<sup>1</sup>malathis2795@gmail.com, <sup>2</sup>hepzibahdani@gmail.com

**Abstract-** The aim of this paper is to introduce the notion of strongly  $\beta$ -generalized  $c^*$ -closed sets which are stronger than the generalized  $\beta$ -closed sets and discuss their relation with some other nearly closed sets in topological spaces.

**Key words:**  $c^*$ -open sets,  $gc^*$ -open sets, strongly  $\beta$ gc $^*$ -closed sets

## I. Introduction

In 1963, Norman Levine introduced semi-open sets and in 1970, he introduced the concept of generalized closed sets in topological spaces. In the year 1965, Njastad introduced the concepts of  $\alpha$ -sets (known as  $\alpha$ -open sets) and  $\beta$ -sets (known as  $\beta$ -open sets) for topological spaces. Andrijevic called  $\beta$ -sets as semi-pre open sets in 1986. Palaniappan and Rao introduced regular generalized closed (briefly, rg-closed) sets in 1993. In this paper we introduce strongly  $\beta$ -generalized  $c^*$ -closed sets in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, strongly  $\beta$ -generalized  $c^*$ -closed sets are introduced and their basic properties are studied.

## II. Preliminaries

Throughout this paper  $X$  denotes a topological space on which no separation axiom is assumed. For any subset  $A$  of  $X$ ,  $cl(A)$  denotes the closure of  $A$ ,  $int(A)$  denotes the interior of  $A$ ,  $pcl(A)$  denotes the pre-closure of  $A$  and  $\beta cl(A)$  denotes the  $\beta$ -closure (equivalently, sp-closure) of  $A$ . The following definitions are very useful in the subsequent sections.

**Definition: 2.1** A subset  $A$  of a topological space  $X$  is called

- i. a semi-open set [4] if  $A \subseteq cl(int(A))$  and a semi-closed set if  $int(cl(A)) \subseteq A$ .
- ii. a pre-open set [10] if  $A \subseteq int(cl(A))$  and a pre-closed set if  $cl(int(A)) \subseteq A$ .
- iii. a regular-open set [16] if  $A = int(cl(A))$  and a regular-closed set if  $A = cl(int(A))$ .
- iv. a  $\pi$ -open set [19] if  $A$  is the finite union of regular-open sets and the complement of  $\pi$ -open set is said to be  $\pi$ -closed.
- v. a  $\gamma$ -open set [18] (b-open set [3]) if  $A \subseteq cl(int(A)) \cup int(cl(A))$  and a  $\gamma$ -closed set (b-closed set) if  $int(cl(A)) \cap cl(int(A)) \subseteq A$ .
- vi. a  $\alpha$ -open set [12] if  $A \subseteq int(cl(int(A)))$  and a  $\alpha$ -closed set if  $cl(int(cl(A))) \subseteq A$ .
- vii. a  $\beta$ -open set [1] (semi-pre open set [2]) if  $A \subseteq cl(int(cl(A)))$  and a  $\beta$ -closed set (semi-pre closed set) if  $int(cl(int(A))) \subseteq A$ .

**Definition: 2.2** [6] A subset  $A$  of a topological space  $X$  is said to be a  $c^*$ -open set if  $int(cl(A)) \subseteq A \subseteq cl(int(A))$ .

**Definition: 2.3** [6] A subset  $A$  of a topological space  $X$  is said to be a generalized  $c^*$ -closed set (briefly,  $gc^*$ -closed set) if  $cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is  $c^*$ -open. The complement of the  $gc^*$ -closed set is  $gc^*$ -open [7].

**Definition: 2.4** A subset  $A$  of a topological space  $X$  is called



This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

- i. a generalized closed (briefly, g-closed) set [5] if  $cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is open in  $X$ .
- ii. a regular-generalized closed (briefly, rg-closed) set [13] if  $cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is regular-open in  $X$ .
- iii. a generalized  $\beta$ -closed (briefly,  $g\beta$ -closed) set [17] if  $\beta cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is open in  $X$ .
- iv. a  $\pi$ -generalized  $\beta$ -closed (briefly,  $\pi g\beta$ -closed) set [14] if  $\beta cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is  $\pi$ -open in  $X$ .
- v. a generalized semi pre regular-closed (briefly,  $gspr$ -closed) set [11] if  $spcl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is regular-open in  $X$ .
- vi. a regular pre semi-closed (briefly,  $rps$ -closed) set [15] if  $spcl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is rg-open in  $X$ .
- vii. a pre-generalized  $c^*$ -closed (briefly,  $pgc^*$ -closed) set [8] if  $pcl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is  $c^*$ -open in  $X$ .
- viii. a  $\alpha$ -generalized  $c^*$ -closed (briefly,  $agc^*$ -closed) set [9] if  $\alpha cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is  $c^*$ -open in  $X$ .

The complements of the above mentioned closed sets are their respective open sets.

### III. Strongly $\beta$ -generalized $c^*$ -closed sets

In this section, we introduce strongly  $\beta$ -generalized  $c^*$ -closed sets and study their basic properties. We begin this section with the definition of a strongly  $\beta$ -generalized  $c^*$ -closed set.

**Definition: 3.1** A subset  $A$  of a topological space  $X$  is said to be strongly  $\beta$ -generalized  $c^*$ -closed (briefly, strongly  $\beta gc^*$ -closed) if  $\beta cl(A) \subseteq H$  whenever  $A \subseteq H$  and  $H$  is  $gc^*$ -open in  $X$ .

**Example: 3.2** Let  $X = \{a, b, c, d\}$  with topology  $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c, d\}, X\}$ . Then the subsets  $\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X$  are strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.3** Let  $X$  be a topological space. Then every closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a closed subset of  $X$ . Then  $A = cl(A)$ . Let  $U$  be a  $gc^*$ -open set in  $X$  containing  $A$ . Then  $\beta cl(A) \subseteq cl(A) = A \subseteq U$ . Therefore,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.4** Let  $X$  be a topological space. Then every  $\pi$ -closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a  $\pi$ -closed subset of  $X$ . Then  $A$  is closed. Therefore, by Proposition 3.3,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.5** Let  $X$  be a topological space. Then every regular closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a regular closed subset of  $X$ . Then  $A$  is closed. Therefore, by Proposition 3.3,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.6** Let  $X$  be a topological space. Then every  $\beta$ -closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a  $\beta$ -closed subset of  $X$ . Then  $A = \beta cl(A)$ . Let  $U$  be a  $gc^*$ -open set in  $X$  containing  $A$ . Then  $\beta cl(A) \subseteq U$ . Therefore,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.7** Let  $X$  be a topological space. Then every semi-closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a semi-closed subset of  $X$ . Then  $A$  is  $\beta$ -closed. Therefore, by Proposition 3.6,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.8** Let  $X$  be a topological space. Then every pre-closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a pre-closed subset of  $X$ . Then  $A = pcl(A)$ . Let  $U$  be a  $gc^*$ -open set in  $X$  containing  $A$ . Then  $pcl(A) \subseteq U$ . This implies,  $\beta cl(A) \subseteq pcl(A) \subseteq U$ . Therefore,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.9** Let  $X$  be a topological space. Then every  $\gamma$ -closed subset of  $X$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a  $\gamma$ -closed subset of  $X$ . Then  $A = \gamma cl(A)$ . Let  $U$  be a  $gc^*$ -open set in  $X$  containing  $A$ . Then  $\gamma cl(A) \subseteq U$ . This implies,  $\beta cl(A) \subseteq \gamma cl(A) \subseteq U$ . Therefore,  $A$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.10** Let  $X$  be a topological space. Then every rps-closed subset of  $X$  is strongly  $\beta\text{gc}^*$ -closed in  $X$ .

**Proof:** Let  $A$  be a rps-closed subset of  $X$ . Let  $U$  be a  $\text{gc}^*$ -open set in  $X$  containing  $A$ . Then  $U$  is the rg-open set in  $X$  containing  $A$ . Therefore,  $\text{spcl}(A) \subseteq U$ . This implies,  $\beta\text{cl}(A) = \text{spcl}(A) \subseteq U$ . Therefore,  $A$  is strongly  $\beta\text{gc}^*$ -closed in  $X$ .

**Proposition: 3.11** Let  $X$  be a topological space. Then every strongly  $\beta\text{gc}^*$ -closed subset of  $X$  is  $g\beta$ -closed in  $X$ .

**Proof:** Let  $A$  be a strongly  $\beta\text{gc}^*$ -closed subset of  $X$ . Let  $U$  be an open set in  $X$  containing  $A$ . Then  $U$  is the  $\text{gc}^*$ -open set in  $X$  containing  $A$ . Therefore,  $\beta\text{cl}(A) \subseteq U$ . Hence,  $A$  is  $g\beta$ -closed in  $X$ .

**Proposition: 3.12** Let  $X$  be a topological space. Then every strongly  $\beta\text{gc}^*$ -closed subset of  $X$  is  $\pi g\beta$ -closed in  $X$ .

**Proof:** Let  $A$  be a strongly  $\beta\text{gc}^*$ -closed subset of  $X$ . Let  $U$  be a  $\pi$ -open set in  $X$  containing  $A$ . Then  $U$  is the  $\text{gc}^*$ -open set in  $X$  containing  $A$ . This implies,  $\beta\text{cl}(A) \subseteq U$ . Therefore,  $A$  is  $\pi g\beta$ -closed in  $X$ .

**Proposition: 3.13** Let  $X$  be a topological space. Then every strongly  $\beta\text{gc}^*$ -closed subset of  $X$  is gspr-closed in  $X$ .

**Proof:** Let  $A$  be a strongly  $\beta\text{gc}^*$ -closed subset of  $X$ . Let  $U$  be a regular open set in  $X$  containing  $A$ . Then  $U$  is the  $\text{gc}^*$ -open set in  $X$  containing  $A$ . This implies,  $\beta\text{cl}(A) \subseteq U$ . Therefore,  $A$  is gspr-closed in  $X$ .

The converse of the above Propositions need not be true, which can be verified from the following example.

**Example: 3.14**

1. Let  $X = \{a, b, c, d, e\}$  with topology  $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, X\}$ . Then the subset  $\{a, b, d, e\}$  is strongly  $\beta\text{gc}^*$ -closed but not closed (regular closed,  $\pi$ -closed,  $\beta$ -closed, rps-closed, semi-closed, pre-closed,  $\gamma$ -closed).
2. Let  $X = \{a, b, c, d\}$  with topology  $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ . Then the subset  $\{a, d\}$  is  $g\beta$ -closed ( $\pi g\beta$ -closed, gspr-closed) but not strongly  $\beta\text{gc}^*$ -closed.

The following example shows that strongly  $\beta\text{gc}^*$ -closed sets and  $g$ -closed ( $\text{gc}^*$ -closed,  $\text{pgc}^*$ -closed,  $\text{agc}^*$ -closed) sets are independent with each other.

**Example: 3.15** Let  $X = \{a, b, c, d\}$  with topology  $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ . Then

- i. the subset  $\{b\}$  is strongly  $\beta\text{gc}^*$ -closed but not  $\text{gc}^*$ -closed and the subset  $\{a, b\}$  is  $\text{gc}^*$ -closed but not strongly  $\beta\text{gc}^*$ -closed
- ii. the subset  $\{b, c\}$  is strongly  $\beta\text{gc}^*$ -closed but not  $g$ -closed and the subset  $\{a, d\}$  is  $g$ -closed but not strongly  $\beta\text{gc}^*$ -closed
- iii. the subset  $\{b\}$  is strongly  $\beta\text{gc}^*$ -closed but not  $\text{pgc}^*$ -closed ( $\text{agc}^*$ -closed) and the subset  $\{a, b\}$  is  $\text{pgc}^*$ -closed ( $\text{agc}^*$ -closed) but not strongly  $\beta\text{gc}^*$ -closed.

**Proposition: 3.16** If all the subsets of a topological space  $X$  are  $\text{gc}^*$ -closed, then the subset  $A$  of  $X$  is  $\beta$ -closed if and only if  $A$  is strongly  $\beta\text{gc}^*$ -closed.

**Proof:** Assume that all the subsets of  $X$  are  $\text{gc}^*$ -closed. Let  $A$  be a  $\beta$ -closed set. Then by Proposition 3.4,  $A$  is strongly  $\beta\text{gc}^*$ -closed. Conversely, Assume that  $A$  is strongly  $\beta\text{gc}^*$ -closed. Since all the subsets of  $X$  are  $\text{gc}^*$ -closed, we have all the subsets of  $X$  are  $\text{gc}^*$ -open. In particular,  $A$  is the  $\text{gc}^*$ -open set containing  $A$ . Therefore, by our assumption,  $\beta\text{cl}(A) \subseteq A$ . Always,  $A \subseteq \beta\text{cl}(A)$ . Therefore,  $A = \beta\text{cl}(A)$ . Hence  $A$  is  $\beta$ -closed.

**Proposition: 3.17** If all the subsets of a topological space  $X$  are  $\text{gc}^*$ -open, then the subset  $A$  of  $X$  is  $\beta$ -closed if and only if  $A$  is strongly  $\beta\text{gc}^*$ -closed.

**Proof:** Assume that all the subsets of  $X$  are  $gc^*$ -open. Let  $A$  be a  $\beta$ -closed set. Then by Proposition 3.4,  $A$  is strongly  $\beta gc^*$ -closed. Conversely, Assume that  $A$  is strongly  $\beta gc^*$ -closed. Since all the subsets of  $X$  are  $gc^*$ -open, we have  $A$  is the  $gc^*$ -open set containing  $A$ . Therefore, by our assumption,  $\beta cl(A) \subseteq A$ . Always,  $A \subseteq \beta cl(A)$ . Therefore,  $A = \beta cl(A)$ . Hence  $A$  is  $\beta$ -closed.

**Proposition: 3.18** If  $\emptyset$  and  $X$  are the only  $c^*$ -open sets, then a subset  $A$  of  $X$  is  $\beta$ -closed if and only if  $A$  is strongly  $\beta gc^*$ -closed.

**Proof:** Assume that  $\emptyset$  and  $X$  are the only  $c^*$ -open sets. Let  $A$  be a  $\beta$ -closed set. Then by Proposition 3.4,  $A$  is strongly  $\beta gc^*$ -closed. Conversely, Assume that  $A$  is strongly  $\beta gc^*$ -closed. Since  $\emptyset$  and  $X$  are the only  $c^*$ -open sets, by Proposition 4.21[6], all the subsets of  $X$  are  $gc^*$ -closed. This implies, all the subsets of  $X$  are  $gc^*$ -open. In particular,  $A$  is the  $gc^*$ -open set containing  $A$ . Therefore, by our assumption,  $\beta cl(A) \subseteq A$ . Always,  $A \subseteq \beta cl(A)$ . Therefore,  $A = \beta cl(A)$ . Hence  $A$  is  $\beta$ -closed.

**Remark: 3.19** The collection of strongly  $\beta gc^*$ -closed sets are not closed under union and intersection. The following examples prove this.

1. Let  $X = \{a, b, c\}$  with topology  $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ . Then the subsets  $\{b\}$  and  $\{c\}$  are strongly  $\beta gc^*$ -closed but their union  $\{b, c\}$  is not strongly  $\beta gc^*$ -closed.
2. Let  $X = \{a, b, c, d\}$  with topology  $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ . Then the subsets  $\{a, c\}$  and  $\{a, b, d\}$  are strongly  $\beta gc^*$ -closed but their intersection  $\{a\}$  is not strongly  $\beta gc^*$ -closed.

**Proposition: 3.20** If a subset  $A$  of a topological space  $X$  is strongly  $\beta gc^*$ -closed in  $X$ , then  $\beta cl(A) \setminus A$  does not contain any non-empty  $gc^*$ -closed set in  $X$ .

**Proof:** Assume that  $A$  is a strongly  $\beta gc^*$ -closed set in  $X$ . Suppose  $H$  is a  $gc^*$ -closed set such that  $H \subseteq \beta cl(A) \setminus A$  and  $H \neq \emptyset$ . Then  $H \subseteq X \setminus A$ . This implies,  $A \subseteq X \setminus H$ . Since  $H$  is the  $gc^*$ -closed set, we have  $X \setminus H$  is the  $gc^*$ -open set in  $X$ . Then  $\beta cl(A) \subseteq X \setminus H$ . This implies,  $H \subseteq X \setminus \beta cl(A)$ . Also,  $H \subseteq \beta cl(A)$ . Hence  $H \subseteq \beta cl(A) \cap (X \setminus \beta cl(A)) = \emptyset$ , which contradicts  $H \neq \emptyset$ . Hence  $\beta cl(A) \setminus A$  does not contain any non-empty  $gc^*$ -closed set in  $X$ .

**Proposition: 3.21** Let  $X$  be a topological space. Then for any element  $p \in X$ , the set  $X \setminus \{p\}$  is either strongly  $\beta gc^*$ -closed or  $gc^*$ -open.

**Proof:** Suppose for any  $p \in X$ ,  $X \setminus \{p\}$  is not a  $gc^*$ -open set. Then  $X$  is the only  $gc^*$ -open set containing  $X \setminus \{p\}$ . Also,  $\beta cl(X \setminus \{p\}) \subseteq X$ . Hence  $X \setminus \{p\}$  is the strongly  $\beta gc^*$ -closed set in  $X$ .

**Proposition: 3.22** Let  $A$  be a strongly  $\beta gc^*$ -closed set in a topological space  $X$ . Then  $A$  is  $\beta$ -closed if and only if  $\beta cl(A) \setminus A$  is  $gc^*$ -closed.

**Proof:** Suppose  $A$  is  $\beta$ -closed. Then  $\beta cl(A) = A$ . This implies,  $\beta cl(A) \setminus A = \emptyset$ , which is  $gc^*$ -closed. Conversely, suppose  $\beta cl(A) \setminus A$  is a  $gc^*$ -closed set in  $X$ . Since  $A$  is strongly  $\beta gc^*$ -closed, we have  $\beta cl(A) \setminus A$  does not contain any non-empty  $gc^*$ -closed set in  $X$ . Then  $\beta cl(A) \setminus A = \emptyset$ . This implies,  $A = \beta cl(A)$ . Hence  $A$  is  $\beta$ -closed.

**Proposition: 3.23** Let  $X$  be a topological space. If  $A$  is a strongly  $\beta gc^*$ -closed subset of  $X$  such that  $A \subseteq B \subseteq \beta cl(A)$ , then  $B$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proof:** Let  $H$  be a  $gc^*$ -open set containing  $B$ . Then  $A \subseteq H$ . Since  $A$  is strongly  $\beta gc^*$ -closed, we have  $\beta cl(A) \subseteq H$ . This implies,  $\beta cl(B) \subseteq H$ . Hence  $B$  is strongly  $\beta gc^*$ -closed in  $X$ .

**Proposition: 3.24** Let  $X$  be a topological space. If  $X$  and  $\emptyset$  are the only  $gc^*$ -open sets then all the subsets of  $X$  are strongly  $\beta gc^*$ -closed.

**Proof:** Let  $A$  be a subset of  $X$ . If  $A = \emptyset$ , then  $A$  is strongly  $\beta gc^*$ -closed. If  $A \neq \emptyset$ , then  $X$  is the only  $gc^*$ -open set containing  $A$ . Also,  $\beta cl(A) \subseteq X$ . Hence  $A$  is strongly  $\beta gc^*$ -closed.

**Proposition: 3.25** A subset A of a topological space X is strongly  $\beta$ gc\*-closed if and only if for each  $A \subseteq H$  and H is gc\*-open, there exists a  $\beta$ -closed set F such that  $A \subseteq F \subseteq H$ .

**Proof:** Suppose A is a strongly  $\beta$ gc\*-closed set. Let  $A \subseteq H$  and H be gc\*-open. Then  $\beta\text{cl}(A) \subseteq H$ . If we put  $F = \beta\text{cl}(A)$ , then  $A \subseteq F \subseteq H$ . Conversely, assume that H is a gc\*-open set containing A. Then there exists a  $\beta$ -closed set F such that  $A \subseteq F \subseteq H$ . Since  $\beta\text{cl}(A)$  is the smallest  $\beta$ -closed set containing A, we have  $A \subseteq \beta\text{cl}(A) \subseteq F$ . Also, since  $F \subseteq H$ , we have  $\beta\text{cl}(A) \subseteq H$ . Hence A is strongly  $\beta$ gc\*-closed.

**Proposition: 3.26** If a subset A of a topological space X is strongly  $\beta$ gc\*-closed in X, then  $\beta\text{cl}(A) \setminus A$  does not contain any non-empty regular closed set in X.

**Proof:** Suppose H is a regular closed set contained in  $\beta\text{cl}(A) \setminus A$  and  $H \neq \emptyset$ . Since every regular-closed set is gc\*-closed, we have H is gc\*-closed. Thus, H is the gc\*-closed set contained in  $\beta\text{cl}(A) \setminus A$ . Therefore, by Proposition 3.19,  $H = \emptyset$ . This is a contradiction. Therefore,  $\beta\text{cl}(A) \setminus A$  does not contain any non-empty regular closed set in X.

**Proposition: 3.27** Let X be a topological space and A be a subset of X. If A is regular open and strongly  $\beta$ gc\*-closed, then A is  $\beta$ -clopen.

**Proof:** Assume that A is regular open and strongly  $\beta$ gc\*-closed. Since every regular open set is gc\*-open, we have  $\beta\text{cl}(A) \subseteq A$ . Then A is  $\beta$ -closed. Since A is regular open, we have A is open. Therefore, A is  $\beta$ -open. Thus, A is both  $\beta$ -open and  $\beta$ -closed. Hence A is  $\beta$ -clopen.

#### IV. CONCLUSIONS

In this paper we have introduced strongly  $\beta$ gc\*-closed sets in topological spaces and studied some of their basic properties. Also, we have discussed their relation with some other nearly closed sets in topological spaces.

#### REFERENCES

- [1] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud.,  $\beta$ -open sets and  $\beta$ -continuous mappings, Bull. Fac. Sci. Assiut univ. 12 (1983) 77-90.
- [2] D. Andrijevic, Semi pre open sets, Mat. Vesnik, 38 (1986) 24-32.
- [3] D. Andrijevic, On b-open sets, Mat. Vesnik, 48 (1996) 59-64.
- [4] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, (1963) 36-41.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970) 89-96.
- [6] S. Malathi and S. Nithyanantha Jothi, On c\*-open sets and generalized c\*-closed sets in topological spaces, Acta Ciencia Indica, Vol. XLIII M, No.2, 125 (2017) 125-133.
- [7] S. Malathi and S. Nithyanantha Jothi, On generalized c\*-open sets and generalized c\*-open maps in topological spaces, Int. J. Mathematics And its Applications, 5(4B) (2017) 121-127.
- [8] S. Malathi and S. Nithyanantha Jothi., On Pre-generalized c\*-closed sets in topological spaces, Journal of Computer and Mathematical Sciences, 8(12) (2017) 720-726.
- [9] S. Malathi and R. Usha Parameswari., On  $\alpha$ -generalized c\*-closed sets in topological spaces", International Journal of Mathematics Trends and Technology- Special Issue NCPAM, (2019) 44-49.
- [10] A.S. Mashhour, M.E. Monsef and S.N. El-Deep., On precontinuous mapping and weak precontinuous mapping, Proc. Math. Phy. Soc. Egypt, 53 (1982) 47-53.
- [11] G. B. Navalagi and Chandrashekappa., On gspr closed sets in topological spaces, International Journal of Mathematics and Computer Applications, 2(1-2) (2010) 51-58.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965) 961-970.
- [13] N. Palaniappan and K.C. Rao., Regular generalized closed sets, kyung-pook Math. J., 33 (1993) 211-219.
- [14] MS. Sarsak, N. Rajes.,  $\pi$ -Generalized Semi-Pre closed Sets, International Mathematical Forum, 5 (2010) 573-578.
- [15] T. Shyla Isac Mary and P. Thangavelu., On regular pre-semi closed sets in topological spaces, KBM J. Math. Sci and Comp. Appl., 1(1) (2010) 9-17.
- [16] M. Stone., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937) 374-481.
- [17] S. Tahiliani., Generalized  $\beta$ -closed functions, Bull. Cal. Math. Soc., 98 (2006) 367-376.
- [18] A.M. Zahran and A.I. EL-Maghrabi., Regular generalized- $\gamma$ -closed sets in topological spaces, Int. Journal of mathematics and computing applications, 3(1-2) (2011) 1-15.
- [19] V. Zaitsev., On certain classes of topological spaces and their bicompleteifications, Dokl. Akad. Nauk. SSSR, 178 (1968) 778-779.